Imprint lithography for integrated circuit fabrication

نویسندگان

  • D. J. Resnick
  • W. J. Dauksher
  • K. J. Nordquist
  • C. G. Willson
چکیده

The escalating cost for next generation lithography ~NGL! tools is driven in part by the need for complex sources and optics. The cost for a single NGL tool could exceed $50M in the next few years, a prohibitive number for many companies. As a result, several researchers are looking at low cost alternative methods for printing sub-100 nm features. In the mid-1990’s, several research groups started investigating different methods for imprinting small features. Many of these methods, although very effective at printing small features across an entire wafer, are limited in their ability to do precise overlay. In 1999, Colburn et al. @Proc. SPIE 379 ~1999!# discovered that imprinting could be done at low pressures and at room temperatures by using low viscosity UV curable monomers. The technology is typically referred to as step and flash imprint lithography. The use of a quartz template enabled the photocuring process to occur and also opened up the potential for optical alignment of the wafer and template. This article traces the development of nanoimprint lithography and addresses the issues that must be solved if this type of technology is to be applied to high-density silicon integrated circuitry. © 2003 American Vacuum Society. @DOI: 10.1116/1.1618238#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trends in imprint lithography for biological applications.

Imprint lithography is emerging as an alternative nano-patterning technology to traditional photolithography that permits the fabrication of 2D and 3D structures with <100 nm resolution, patterning and modification of functional materials other than photoresist and is low cost, with operational ease for use in developing bio-devices. Techniques for imprint lithography, categorized as either 'mo...

متن کامل

- 1 - Exploration of Disruptive Technologies for low cost RFID Manufacturing

Significant developments have taken place in defining technology standards and identifying avenues for technological innovations to reduce the cost of manufacturing RFID tags below the $0.05 price point. The Auto-ID center at MIT has been the central coordinating body with participation from 5 universities and over 100 industry partners. The primary focus of these efforts has been in developing...

متن کامل

Lithography –aware Design Enables “Extreme” RET

That formula is also the governing equation that rules optical lithography. R is the measure for resolution, or minimal feature width, which we want to resolve. In traditional semiconductor manufacturing, integrated circuit (IC) layout patterns are printed onto a silicon wafer using ‘light’ of a certain wavelength λ, projecting a mask or reticle through a lens with a certain opening angle, defi...

متن کامل

Three-Dimensional Patterning using Ultraviolet Nanoimprint Lithography

Although an extensive number of publications have been reported on nanoimprint lithography (NIL) techniques, the ability of NIL for three-dimensional (3-D) patterning has not been fully addressed in terms of the mold fabrication and imprint processes. Developing technologies for patterning 3-D and multilevel features are important because they eliminate multiple steps and complex interlevel ali...

متن کامل

Sub-20-nm alignment in nanoimprint lithography using Moiré fringe.

Accurate multi-level overlay capability for nanoimprint lithography (NIL) is essential to integrated circuit manufacturing and other multilayer imprint applications. Using the "beat" grating image (Moiré fringe) generated by overlaying two sets of gratings that have slightly different periods, we obtained an alignment signal with a sensitivity better than 10 nm in nanoimprint lithography. The a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003